3.7.79 \(\int \frac {(d+e x)^{3/2}}{\sqrt {a+c x^2}} \, dx\) [679]

Optimal. Leaf size=317 \[ \frac {2 e \sqrt {d+e x} \sqrt {a+c x^2}}{3 c}-\frac {8 \sqrt {-a} d \sqrt {d+e x} \sqrt {1+\frac {c x^2}{a}} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{3 \sqrt {c} \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {a+c x^2}}+\frac {2 \sqrt {-a} \left (c d^2+a e^2\right ) \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {1+\frac {c x^2}{a}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{3 c^{3/2} \sqrt {d+e x} \sqrt {a+c x^2}} \]

[Out]

2/3*e*(e*x+d)^(1/2)*(c*x^2+a)^(1/2)/c-8/3*d*EllipticE(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),(-2*a*e/(-a*e
+d*(-a)^(1/2)*c^(1/2)))^(1/2))*(-a)^(1/2)*(e*x+d)^(1/2)*(c*x^2/a+1)^(1/2)/c^(1/2)/(c*x^2+a)^(1/2)/((e*x+d)*c^(
1/2)/(e*(-a)^(1/2)+d*c^(1/2)))^(1/2)+2/3*(a*e^2+c*d^2)*EllipticF(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),(-
2*a*e/(-a*e+d*(-a)^(1/2)*c^(1/2)))^(1/2))*(-a)^(1/2)*(c*x^2/a+1)^(1/2)*((e*x+d)*c^(1/2)/(e*(-a)^(1/2)+d*c^(1/2
)))^(1/2)/c^(3/2)/(e*x+d)^(1/2)/(c*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 317, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {757, 858, 733, 435, 430} \begin {gather*} \frac {2 \sqrt {-a} \sqrt {\frac {c x^2}{a}+1} \left (a e^2+c d^2\right ) \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {-a} e+\sqrt {c} d}} F\left (\text {ArcSin}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{3 c^{3/2} \sqrt {a+c x^2} \sqrt {d+e x}}-\frac {8 \sqrt {-a} d \sqrt {\frac {c x^2}{a}+1} \sqrt {d+e x} E\left (\text {ArcSin}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{3 \sqrt {c} \sqrt {a+c x^2} \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {-a} e+\sqrt {c} d}}}+\frac {2 e \sqrt {a+c x^2} \sqrt {d+e x}}{3 c} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^(3/2)/Sqrt[a + c*x^2],x]

[Out]

(2*e*Sqrt[d + e*x]*Sqrt[a + c*x^2])/(3*c) - (8*Sqrt[-a]*d*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]*EllipticE[ArcSin[S
qrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(3*Sqrt[c]*Sqrt[(Sqrt[c]*(d + e*
x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^2]) + (2*Sqrt[-a]*(c*d^2 + a*e^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]
*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt
[-a]*Sqrt[c]*d - a*e)])/(3*c^(3/2)*Sqrt[d + e*x]*Sqrt[a + c*x^2])

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 733

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2*a*Rt[-c/a, 2]*(d + e*x)^m*(Sqrt[1
+ c*(x^2/a)]/(c*Sqrt[a + c*x^2]*(c*((d + e*x)/(c*d - a*e*Rt[-c/a, 2])))^m)), Subst[Int[(1 + 2*a*e*Rt[-c/a, 2]*
(x^2/(c*d - a*e*Rt[-c/a, 2])))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-c/a, 2]*x)/2]], x] /; FreeQ[{a, c, d, e},
 x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 757

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*((a + c*x^2)^(p
 + 1)/(c*(m + 2*p + 1))), x] + Dist[1/(c*(m + 2*p + 1)), Int[(d + e*x)^(m - 2)*Simp[c*d^2*(m + 2*p + 1) - a*e^
2*(m - 1) + 2*c*d*e*(m + p)*x, x]*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, m, p}, x] && NeQ[c*d^2 + a*e^2,
0] && If[RationalQ[m], GtQ[m, 1], SumSimplerQ[m, -2]] && NeQ[m + 2*p + 1, 0] && IntQuadraticQ[a, 0, c, d, e, m
, p, x]

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {(d+e x)^{3/2}}{\sqrt {a+c x^2}} \, dx &=\frac {2 e \sqrt {d+e x} \sqrt {a+c x^2}}{3 c}+\frac {2 \int \frac {\frac {1}{2} \left (3 c d^2-a e^2\right )+2 c d e x}{\sqrt {d+e x} \sqrt {a+c x^2}} \, dx}{3 c}\\ &=\frac {2 e \sqrt {d+e x} \sqrt {a+c x^2}}{3 c}+\frac {1}{3} (4 d) \int \frac {\sqrt {d+e x}}{\sqrt {a+c x^2}} \, dx-\frac {\left (c d^2+a e^2\right ) \int \frac {1}{\sqrt {d+e x} \sqrt {a+c x^2}} \, dx}{3 c}\\ &=\frac {2 e \sqrt {d+e x} \sqrt {a+c x^2}}{3 c}+\frac {\left (8 a d \sqrt {d+e x} \sqrt {1+\frac {c x^2}{a}}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {2 a \sqrt {c} e x^2}{\sqrt {-a} \left (c d-\frac {a \sqrt {c} e}{\sqrt {-a}}\right )}}}{\sqrt {1-x^2}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{3 \sqrt {-a} \sqrt {c} \sqrt {\frac {c (d+e x)}{c d-\frac {a \sqrt {c} e}{\sqrt {-a}}}} \sqrt {a+c x^2}}-\frac {\left (2 a \left (c d^2+a e^2\right ) \sqrt {\frac {c (d+e x)}{c d-\frac {a \sqrt {c} e}{\sqrt {-a}}}} \sqrt {1+\frac {c x^2}{a}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {2 a \sqrt {c} e x^2}{\sqrt {-a} \left (c d-\frac {a \sqrt {c} e}{\sqrt {-a}}\right )}}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{3 \sqrt {-a} c^{3/2} \sqrt {d+e x} \sqrt {a+c x^2}}\\ &=\frac {2 e \sqrt {d+e x} \sqrt {a+c x^2}}{3 c}-\frac {8 \sqrt {-a} d \sqrt {d+e x} \sqrt {1+\frac {c x^2}{a}} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{3 \sqrt {c} \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {a+c x^2}}+\frac {2 \sqrt {-a} \left (c d^2+a e^2\right ) \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {1+\frac {c x^2}{a}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{3 c^{3/2} \sqrt {d+e x} \sqrt {a+c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 21.49, size = 445, normalized size = 1.40 \begin {gather*} \frac {2 \sqrt {d+e x} \left (e^2 \left (a+c x^2\right )+\frac {4 d e^2 \left (a+c x^2\right )}{d+e x}+4 i c d \sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}} \sqrt {\frac {e \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{d+e x}} \sqrt {-\frac {\frac {i \sqrt {a} e}{\sqrt {c}}-e x}{d+e x}} \sqrt {d+e x} E\left (i \sinh ^{-1}\left (\frac {\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}{\sqrt {d+e x}}\right )|\frac {\sqrt {c} d-i \sqrt {a} e}{\sqrt {c} d+i \sqrt {a} e}\right )+\frac {i \left (3 c d^2+4 i \sqrt {a} \sqrt {c} d e-a e^2\right ) \sqrt {\frac {e \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{d+e x}} \sqrt {-\frac {\frac {i \sqrt {a} e}{\sqrt {c}}-e x}{d+e x}} \sqrt {d+e x} F\left (i \sinh ^{-1}\left (\frac {\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}{\sqrt {d+e x}}\right )|\frac {\sqrt {c} d-i \sqrt {a} e}{\sqrt {c} d+i \sqrt {a} e}\right )}{\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}\right )}{3 c e \sqrt {a+c x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^(3/2)/Sqrt[a + c*x^2],x]

[Out]

(2*Sqrt[d + e*x]*(e^2*(a + c*x^2) + (4*d*e^2*(a + c*x^2))/(d + e*x) + (4*I)*c*d*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c
]]*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*Sqrt[d + e*x
]*EllipticE[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d +
I*Sqrt[a]*e)] + (I*(3*c*d^2 + (4*I)*Sqrt[a]*Sqrt[c]*d*e - a*e^2)*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]
*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*Sqrt[d + e*x]*EllipticF[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sq
rt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)])/Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]])
)/(3*c*e*Sqrt[a + c*x^2])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(977\) vs. \(2(251)=502\).
time = 0.49, size = 978, normalized size = 3.09 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(3/2)/(c*x^2+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/3*(e*x+d)^(1/2)*(c*x^2+a)^(1/2)*((-a*c)^(1/2)*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e
/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticF((-(e*x+d)*c/((-a*c)^(
1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a*e^3+(-a*c)^(1/2)*(-(e*x+d)*c/((-a*c)^
(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c
*d))^(1/2)*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2
))*c*d^2*e+3*a*c*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((
c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1
/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*d*e^2+3*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e
/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticF((-(e*x+d)*c/((-a*c)^(
1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*c^2*d^3-4*a*c*(-(e*x+d)*c/((-a*c)^(1/2)
*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^
(1/2)*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*d*
e^2-4*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^
(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/
((-a*c)^(1/2)*e+c*d))^(1/2))*c^2*d^3+c^2*e^3*x^3+c^2*d*e^2*x^2+a*c*e^3*x+a*d*e^2*c)/e/(c*e*x^3+c*d*x^2+a*e*x+a
*d)/c^2

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((x*e + d)^(3/2)/sqrt(c*x^2 + a), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.87, size = 193, normalized size = 0.61 \begin {gather*} -\frac {2 \, {\left (12 \, c^{\frac {3}{2}} d e^{\frac {3}{2}} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )} e^{\left (-2\right )}}{3 \, c}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )} e^{\left (-3\right )}}{27 \, c}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )} e^{\left (-2\right )}}{3 \, c}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )} e^{\left (-3\right )}}{27 \, c}, \frac {1}{3} \, {\left (3 \, x e + d\right )} e^{\left (-1\right )}\right )\right ) - {\left (5 \, c d^{2} - 3 \, a e^{2}\right )} \sqrt {c} e^{\frac {1}{2}} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )} e^{\left (-2\right )}}{3 \, c}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )} e^{\left (-3\right )}}{27 \, c}, \frac {1}{3} \, {\left (3 \, x e + d\right )} e^{\left (-1\right )}\right ) - 3 \, \sqrt {c x^{2} + a} \sqrt {x e + d} c e^{2}\right )} e^{\left (-1\right )}}{9 \, c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

-2/9*(12*c^(3/2)*d*e^(3/2)*weierstrassZeta(4/3*(c*d^2 - 3*a*e^2)*e^(-2)/c, -8/27*(c*d^3 + 9*a*d*e^2)*e^(-3)/c,
 weierstrassPInverse(4/3*(c*d^2 - 3*a*e^2)*e^(-2)/c, -8/27*(c*d^3 + 9*a*d*e^2)*e^(-3)/c, 1/3*(3*x*e + d)*e^(-1
))) - (5*c*d^2 - 3*a*e^2)*sqrt(c)*e^(1/2)*weierstrassPInverse(4/3*(c*d^2 - 3*a*e^2)*e^(-2)/c, -8/27*(c*d^3 + 9
*a*d*e^2)*e^(-3)/c, 1/3*(3*x*e + d)*e^(-1)) - 3*sqrt(c*x^2 + a)*sqrt(x*e + d)*c*e^2)*e^(-1)/c^2

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (d + e x\right )^{\frac {3}{2}}}{\sqrt {a + c x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(3/2)/(c*x**2+a)**(1/2),x)

[Out]

Integral((d + e*x)**(3/2)/sqrt(a + c*x**2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((x*e + d)^(3/2)/sqrt(c*x^2 + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (d+e\,x\right )}^{3/2}}{\sqrt {c\,x^2+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^(3/2)/(a + c*x^2)^(1/2),x)

[Out]

int((d + e*x)^(3/2)/(a + c*x^2)^(1/2), x)

________________________________________________________________________________________